Penalized profiled semiparametric estimating functions
نویسندگان
چکیده
منابع مشابه
Penalized Profiled Semiparametric Estimating Functions
In this paper, we propose a general class of penalized profiled semiparametric estimating functions which is applicable to a wide range of statistical models, including quantile regression, survival analysis, and missing data, among others. It is noteworthy that the estimating function can be non-smooth in the parametric and/or nonparametric components. Without imposing a specific functional st...
متن کاملPenalized Estimating Functions and Variable Selection in Semiparametric Regression Models.
We propose a general strategy for variable selection in semiparametric regression models by penalizing appropriate estimating functions. Important applications include semiparametric linear regression with censored responses and semiparametric regression with missing predictors. Unlike the existing penalized maximum likelihood estimators, the proposed penalized estimating functions may not pert...
متن کاملPenalized semiparametric density estimation
In this article we propose a penalized likelihood approach for the semiparametric density model with parametric and nonparametric components. An efficient iterative procedure is proposed for estimation. Approximate generalized maximum likelihood criterion from Bayesian point of view is derived for selecting the smoothing parameter. The finite sample performance of the proposed estimation approa...
متن کاملPartly functional temporal process regression with semiparametric profile estimating functions.
SUMMARY Marginal mean models of temporal processes in event time data analysis are gaining more attention for their milder assumptions than the traditional intensity models. Recent work on fully functional temporal process regression (TPR) offers great flexibility by allowing all the regression coefficients to be nonparametrically time varying. The existing estimation procedure, however, preven...
متن کاملMarginal longitudinal semiparametric regression via penalized splines.
We study the marginal longitudinal nonparametric regression problem and some of its semiparametric extensions. We point out that, while several elaborate proposals for efficient estimation have been proposed, a relative simple and straightforward one, based on penalized splines, has not. After describing our approach, we then explain how Gibbs sampling and the BUGS software can be used to achie...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Electronic Journal of Statistics
سال: 2013
ISSN: 1935-7524
DOI: 10.1214/13-ejs859